Politechnika Warszawska - Centralny System Uwierzytelniania
Strona główna

Physics 2

Informacje ogólne

Kod przedmiotu: 103A-CTxxx-ISA-EPHY2
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Physics 2
Jednostka: Wydział Elektroniki i Technik Informacyjnych
Grupy: ( Courses in English )--eng.-EITI
( Fizyka )-Informatyka-inż.-EITI
( Physics )--B.Sc.-EITI
( Przedmioty techniczne )---EITI
( Technical Courses )--eng.-EITI
Punkty ECTS i inne: 6.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Jednostka decyzyjna:

103000 - Wydział Elektroniki i Technik Informacyjnych

Kod wydziałowy:

EPHY2

Numer wersji:

1

Skrócony opis:

Zasadnicza część przedmiotu dotyczy Maxwellowskiej teorii pól i fal elektromagnetycznych, która leży u podstaw telekomunikacji. Wykład zaczyna się od fizycznych interpretacji równań Maxwella. Następnie dyskutowane jest zjawisko fal elektromagnetycznych w różnych warunkach, propagacyjnych, takich jak przestrzeń nieograniczona, ośrodki uwarstwione i popularne prowadnice falowe. Modele teoretyczne ilustrowane są przez animowane symulacje komputerowe z wykorzystaniem znanego na świecie oprogramowania elektromagnetycznego. Na podstawie rozwiązania równania falowego dla fal akustycznych, przeprowadzone jest porównanie własności fal akustycznych i elektromagnetycznych. Przedstawiane są praktyczne zastosowania fal elektromagnetycznych i akustycznych w elektronice i telekomunikacji. Do rozważanych przykładów należą prowadnice fal poprzecznych (TEM) i quasi-TEM wykorzystywane w technologiach informatycznych, urządzenia falowodowe dla potrzeb techniki radarowej, kryształy fotoniczne i (...)

Pełny opis: (tylko po angielsku)

A major part of the course deals with the Maxwellian theory of electromagnetic fields and waves, which lie at the heart of telecommunications. The lectures start from physical interpretations of the Maxwell equations. Then the phenomenon of electromagnetic waves is discussed in various environments, including infinite space, layer media, and popular waveguiding structures. All theoretical models are illustrated with animated computer simulations using renown electromagnetic software. Finally, the acoustic wave equation is considered and properties of the acoustic and electromagnetic waves are compared. Practical applications of the electromagnetic and acoustic waves in electronics and telecommunications are addressed. The considered subjects include transverse electromagnetic (TEM) and quasi-TEM transmission lines used in IT, cylindrical waveguide devices for radar applications, photonic crystals and fibers, and antennas for satellite communications.

Lecture contents

  • Maxwell equations (2h): their history (when did Maxwell live and what was his name?..); differential and integral forms; real and
    complex notation; physical interpretations.

  • Environments of wave propagation (2h): media classification
    and constitutive relations; the hot topics of double-negative
    materials, a perfect planar lens, and perfect cladding (live computer
    simulations 0.5h).

  • Plane waves in infinite space (3h): wave equation; plane waves in
    lossless and lossy media; transverse electromagnetic (TEM) waves; wave
    impedance, medium intrinsic impedance, wavelength, attenuation, skin
    effect (live computer simulations 1h).

  • Plane waves in layered media (3h): boundary conditions;
    reflection of waves upon normal incidence; reflection coefficient,
    transmission coefficient, standing wave ratio; half- and quater-wave
    transformers - a transparent material plate; how do we shield devices
    at RF and microwave frequencies (live computer simulations 1h).

  • Electromagnetic energy and power flow (2h): definitions of energy
    density, dissipated power density, power flux; Poynting theorem and its
    implications.

  • Waves in TEM transmission lines (4h): properties of waves in
    generic TEM lines (coax, parallel plate) and practical quasi-TEM lines
    (inhomogeneous coax, microstrip, coplanar waveguide); circuit
    parameters of TEM lines (live computer simulations 1h).

  • Introduction to computational electromagnetics (2h): why do
    analytical methods fail for practical devices - remarks on conformal
    mapping and separation of variables; FD algorithms for Laplace equation
    in TEM lines; FDTD algorithms for waves propagating in transmission
    lines (live computer simulations 1h).

  • Waves in cylindrical hollow waveguides (3h): TE and TM modes in
    rectangular and circular waveguides; cut-off frequencies, dispersion
    characteristics, propagating and evanescent waves; modal field patterns
    (live computer simulations 1h).

  • Waves in cavity resonators (1h): resona?tors constructed as
    waveguide sections, eigenmodes, resonant and eigenfrequencies,
    Q-factors; why do we need resonators?; is my domestic microwave oven a
    resonator? (live computer simulations 0.3h)

  • Waves in dielectric waveguides (4h): oblique incidence and the
    effect of total reflection; modes in cladded core optical fibres;
    photonic crystals and PBG phenomenon; microstructured photonic
    fibers (live computer simulations 1h).

  • Acoustic waves (2h): wave equation for acoustic pressure,
    physical interpretations; basic solutions - the concept of longitudinal
    waves; soft and hard boundaries, a quest for their analogues in
    electromagnetics.

  • Waves radiated by antennas (2h): potentials and Green function;
    Hertz dipole; Huygens principle; near and far fields; radiation
    patterns, gain, radiation resistance, matching; scattering of
    electromagnetic and sound waves; when I speak on my mobile - is this
    the antenna or myself that radiate? (live computer simulations 0.5h).


Tutorial contents
Tutorials illustrate the theoretical content of the lectures with
examples of practical applications and numerical calculations. The
students learn to determine basic parameters of wave propagation in
various environments. Special attention is devoted to understanding,
drawing, and interpreting of field patterns. Full-wave computer
simulations will be demonstrated by the tutor to confirm the
solutions obtained analytically.

  • Differential operators in field theory (2h): curl, divergence,
    gradient; Gauss and Stokes theorem; identities of vector algebra; angle
    between field vectors in various media.

  • Plane waves in lossless space (2h): mathematical expressions for
    E- and H-fields; linear, circular, and elliptical polarization; time-
    and space-envelopes of power and energy.

  • Plane waves in lossy space (2h): mathematical expressions for E-
    and H-fields; shape of their envelopes; validating Poynting theorem.

  • Plane waves in layered media (2h): wave incidence onto a
    dielectric half-space; designing a quarter-wave transformer.

  • Waves in TEM transmission lines (2h): unit parameters of TEM and
    parallel-plate lines;

  • Waves in cylindrical hollow waveguides (2h): drawing modal field
    patterns in waveguide cross-section; comparison of wavelength and wave
    impedance with TEM lines.

  • Waves in cavity resonators (2h): calculating resonant frequencies
    and modal field patterns in sections of coax and rectangular waveguide.

  • Waves radiated by antennas (1h): a simple array of two Hertzian
    dipoles.


Laboratory contents
Laboratories take place in a computer laboratory. Contemporary
electromagnetic software tools of QuickWave series, awarded with the
European Information Technology Prize, are applied to illustrate the
wave phenomena. The considered subjects are:

  • TEM waves in lossless (2h) and lossy (2h) media: virtual
    measurements of wavelength, wave impedance, attenuation; understanding
    hill-top and thermal field displays;

  • normal incidence of TEM waves onto PEC and PMC walls:
    understanding of reflected waves transient phenomena, steady-state
    virtual measurements of reflection coefficient, standing wave
    ratio, and phase-shift between E- and H- fields (2h);

  • normal incidence of TEM waves onto dielectric half-space and
    layered media: single and multiple reflections in transient state,
    steady-state virtual measurements of standing wave ratio, verification
    of half-wave and quarter-wave transformer concepts (2h);

  • modes in transmission lines: TEM lines (2h), rectangular
    waveguide (2h), dielectric guide (1h);

  • fields radiated by simple antennas: matching, radiation patterns,
    gain (2h).

The emphasis is on critical correlation between numerical results and
analytical predictions. The students are expected to learn and
understand various computer displays of EM fields (1D/2D/3D,
instantaneous / envelopes) and to enhance their perception of
wave phenomena.


Similar Courses
CodeNameDiscount ECTS
103B-INxxx-ISP-FPPIFizyczne podstawy przetwarzania informacji4
103A-INxxx-ISP-FKSFizyka kwantowa i statystyczna4

Literatura: (tylko po angielsku)

    1. S.Ramo, J.Whinnery, and T.van Duzer, "Fields and Waves in
      Communication Electronics", John Wiley & Sons, 1984.

    2. Extended reading:

    3. C.Balanis, "Advanced Engineering Electromagnetics", John Wiley
      & Sons, Inc. 1989.

    4. Illustrative:

    5. M.Celuch and W.K.Gwarek, "Industrial design of axisymmetrical
      devices using a customized FDTD solver from RF to optical frequency
      bands", IEEE Microwave Magazine, vol. 9, No. 6, Dec. 2008, pp. 150- 158.

    6. B.Salski, M.Celuch, and W.Gwarek, "FDTD for nanoscale and optical
      problems", IEEE Microwave Magazine, vol.11, No.2, April 2010, pp.50- 59.

Metody i kryteria oceniania: (tylko po angielsku)

During the 6 lab exercises it is possible to score up to 30 points:


  • 12 points for entry tests (6*2)

  • 18 points for exercise execution (6*3)


Maximum score for the mid-term test is 30 points and for final test is
30 points. There are also

5 quiz-type tests (during tutorials), each one for 2 points. Two
non-obligatory homeworks will be suggested, one before each test, with
the total value of 10 points.

The final result is based on the following pattern:


  • A: 91-110 points

  • B+: 81-90 points

  • B: 71-80 points

  • C+: 61-70 points

  • C: 51-60 points

  • D: 0 -50 points

Zajęcia w cyklu "rok akademicki 2023/2024 - sem. letni" (w trakcie)

Okres: 2024-02-19 - 2024-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 90 miejsc więcej informacji
Laboratorium, 15 godzin, 90 miejsc więcej informacji
Wykład, 30 godzin, 90 miejsc więcej informacji
Koordynatorzy: Mateusz Krysicki, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2022/2023 - sem. letni" (zakończony)

Okres: 2023-02-20 - 2023-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 90 miejsc więcej informacji
Laboratorium, 15 godzin, 90 miejsc więcej informacji
Wykład, 30 godzin, 90 miejsc więcej informacji
Koordynatorzy: Mateusz Krysicki, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2021/2022 - sem. letni" (zakończony)

Okres: 2022-02-23 - 2022-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 90 miejsc więcej informacji
Laboratorium, 15 godzin, 90 miejsc więcej informacji
Wykład, 30 godzin, 90 miejsc więcej informacji
Koordynatorzy: Mateusz Krysicki, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2021/2022 - sem. zimowy" (zakończony)

Okres: 2021-10-01 - 2022-02-22
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 60 miejsc więcej informacji
Laboratorium, 15 godzin, 60 miejsc więcej informacji
Wykład, 30 godzin, 60 miejsc więcej informacji
Koordynatorzy: Tomasz Karpisz, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Tomasz Karpisz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2020/2021 - sem. letni" (zakończony)

Okres: 2021-02-20 - 2021-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 70 miejsc więcej informacji
Laboratorium, 15 godzin, 70 miejsc więcej informacji
Wykład, 30 godzin, 70 miejsc więcej informacji
Koordynatorzy: Bartłomiej Salski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2020/2021 - sem. zimowy" (zakończony)

Okres: 2020-10-01 - 2021-02-19
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 60 miejsc więcej informacji
Laboratorium, 15 godzin, 60 miejsc więcej informacji
Wykład, 30 godzin, 60 miejsc więcej informacji
Koordynatorzy: Tomasz Karpisz, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Tomasz Karpisz, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2019/2020 - sem. letni" (zakończony)

Okres: 2020-02-22 - 2020-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 70 miejsc więcej informacji
Laboratorium, 15 godzin, 70 miejsc więcej informacji
Wykład, 30 godzin, 70 miejsc więcej informacji
Koordynatorzy: Bartłomiej Salski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2019/2020 - sem. zimowy" (zakończony)

Okres: 2019-10-01 - 2020-02-21
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 60 miejsc więcej informacji
Laboratorium, 15 godzin, 60 miejsc więcej informacji
Wykład, 30 godzin, 60 miejsc więcej informacji
Koordynatorzy: Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2018/2019 - sem. letni" (zakończony)

Okres: 2019-02-18 - 2019-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 60 miejsc więcej informacji
Laboratorium, 15 godzin, 60 miejsc więcej informacji
Wykład, 30 godzin, 60 miejsc więcej informacji
Koordynatorzy: Bartłomiej Salski
Prowadzący grup: Tomasz Karpisz, Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Zajęcia w cyklu "rok akademicki 2018/2019 - sem. zimowy" (zakończony)

Okres: 2018-10-01 - 2019-02-17
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin, 60 miejsc więcej informacji
Laboratorium, 15 godzin, 60 miejsc więcej informacji
Wykład, 30 godzin, 60 miejsc więcej informacji
Koordynatorzy: Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Prowadzący grup: Przemysław Korpas, Adam Pacewicz, Bartłomiej Salski, Maciej Sypniewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Jednostka realizująca:

103400 - Instytut Radioelektroniki i Technik Multimedialnych

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Politechnika Warszawska.
pl. Politechniki 1, 00-661 Warszawa tel: (22) 234 7211 https://pw.edu.pl kontakt deklaracja dostępności USOSweb 7.0.0.0-7 (2024-03-18)