Politechnika Warszawska - Centralny System Uwierzytelniania
Nie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Pattern Recognition

Informacje ogólne

Kod przedmiotu: 103C-CSCSN-MSA-EPART Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Pattern Recognition
Jednostka: Wydział Elektroniki i Technik Informacyjnych
Grupy: ( Computer Systems and Networks - Advanced )-Computer Systems and Networks-M.Sc.-EITI
( Courses in English )--eng.-EITI
( Przedmioty techniczne )---EITI
( Przedmioty zaawansowane )-Informatyka-dr.-EITI
( Przedmioty zaawansowane )-Inżynieria systemów informatycznych-mgr.-EITI
( Przedmioty zaawansowane techniczne )--mgr.-EITI
( Technical Courses )--eng.-EITI
Punkty ECTS i inne: 6.00
Język prowadzenia: angielski
Jednostka decyzyjna:

103000 - Wydział Elektroniki i Technik Informacyjnych

Kod wydziałowy:

EPART

Numer wersji:

3

Skrócony opis:

Celem wykładu jest zapoznanie słuchaczy z zagadnieniem rozpoznawania obrazów. W szczególności zostaną omówione: ogólna klasyfikacja systemów rozpoznawania obrazu, wybrane metody i techniki rozpoznawania obrazu oraz zagadnienia związane ze zbieraniem danych, segmentacją obrazu i redukcją wymiarowości wzorców. Przedstawione przykłady zastosowań omawianych metod w systemach rozpoznawania (wraz z projektem realizowanym w ramach przedmiotu) pozwolą słuchaczom na analizę praktycznych aspektów rozpoznawania obrazów.

Zajęcia zostały przygotowane i są prowadzone z wykorzystaniem kompetencji i umiejętności z zakresu wyszukiwania i weryfikacji informacji, komunikacji, prezentacji informacji, dystrybucji zarządzania informacją.

Pełny opis: (tylko po angielsku)

The aim of the lecture is to present pattern recognition issues. Particularly general classification of pattern recognition approaches together with selected pattern recognition methods and techniques will be presented. Also issues concerning data acquisition, image segmentation and pattern dimensionality reduction will be discussed. Examples of applications of the discussed methods in recognition systems (together with project realised during the course) will allow listeners to analyse practical aspects of pattern recognition.
Classes have been prepared and are conducted using the competences and skills in the field of searching and verification of information, communication, information presentation, and information distribution management.




Lecture contents
Introduction

Formulation of the pattern recognition problem. Classes and objects. Classification of pattern recognition methods. Evaluation of recognition quality. Applications of pattern recognition methods.

Data aquisition and preprocessing

Overview of data aquisition hardware. Survey of parameters of the selected devices. Lossy and lossless data compression. Image quality enhancement. Image filtering and segmentation. Image transforms to other representation domains.

Selection of the feature vector; Grouping

Overview of the feature vectors used in real applications. Dimensionality reduction of the feature vector. Formulation of the grouping problem. Methods for a grouping quality and similarity evaluation.

Direct classification

Pattern method. Selection of the group representatives. Nearest neighbourhood methods. Size reduction of the training set. Selection of the k parameter in k-NN methods.

PCA and LDA analysis

Karhun-Love Transform. Implementation of Eigenfaces to face recognition. Scatter matrieces. Comparison of PCA and LDA methods.

Bayesian classification

Bayes theorem and optimal Bayes rule. Assumptions concerning probability density. Multicategory classification. Sources of a priori probability. Kernel methods for probability density estimation.

Support Vector Machines

General concept of the method. Non-linear separable case. Analysis of kernel functions used in SVM. Computational complexity of a learning and a classification phase. Accelerating SVM. Generalization properties of a classifier. Risk boundary.

Neural networks classification

Basic neuron model. Discreet and continuous activation functions. Basic learning procedures. Gradient learning algorithm. Backpropagation algorithm. Convergence and selection of learning parameters. Feedback networks. Associative memories implemented with neural networks. Self-organizing networks used for data grouping.

Syntactic methods

Basic notions: alphabets, grammars, languages, stochastic languages. Chomksy hierarchy. Grammatic inference problem for a given language. Constructing a language parser. Graph and tree grammars.

Classification quality enhancement

Multiple classifier approach. Using genetic algorithm to compute weight coefficients for individual classifiers. Voting methods. Importance of context information. Using dictionaries. Loevenstein distance. N-grams.


Laboratory contents

  1. Probability density estimation. Bayesian classification.

  2. Nearest neighbour classification. Training set edition and pruning.

  3. PCA and LDA feature space dimensionality reduction. Application to face recognition.

  4. Neural networks: selection of the architecture, training and classification. Classifier overfitting.



Projects contents
>

Similar Courses
CodeNameDiscount ECTS
103B-INxxx-MSP-ROBRozpoznawanie obrazów4
103B-INxxx-MSP-ROBRozpoznawanie obrazów4
103B-INxxx-MSP-ROBRozpoznawanie obrazów4

Literatura: (tylko po angielsku)

    1. Jain A. K., Fundamentals of Digital Image Processing, Prentice-Hall International Editions, Engelwood Hills, 1989

    2. Duda R.O., Hart P.E., Stork D.G. Pattern Classification, John Wiley & Sons, 2000

    3. Nadler M., Smith E.P., Pattern Recognition Engineering, Wiley-Interscience, New York, 1993

    4. Tadeusiewicz R., Flasiński M., Rozpoznawanie obrazów, PWN, Warszawa 1991

    5. Sobczak W., Malina W., Metody selekcji i redukcji informacji, WNT, Warszawa 1985

Zajęcia w cyklu "rok akademicki 2020/2021 - sem. zimowy" (w trakcie)

Okres: 2020-10-01 - 2021-02-12
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 32 miejsc więcej informacji
Projekt, 15 godzin, 32 miejsc więcej informacji
Wykład, 30 godzin, 32 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Zajęcia w cyklu "rok akademicki 2019/2020 - sem. zimowy" (zakończony)

Okres: 2019-10-01 - 2020-02-21
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 32 miejsc więcej informacji
Projekt, 15 godzin, 32 miejsc więcej informacji
Wykład, 30 godzin, 32 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Zajęcia w cyklu "rok akademicki 2018/2019 - sem. zimowy" (zakończony)

Okres: 2018-10-01 - 2019-02-17
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 32 miejsc więcej informacji
Projekt, 15 godzin, 32 miejsc więcej informacji
Wykład, 30 godzin, 32 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Zajęcia w cyklu "rok akademicki 2017/2018 - sem. letni" (zakończony)

Okres: 2018-02-19 - 2018-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 24 miejsc więcej informacji
Projekt, 15 godzin, 24 miejsc więcej informacji
Wykład, 30 godzin, 24 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Zajęcia w cyklu "rok akademicki 2017/2018 - sem. zimowy" (zakończony)

Okres: 2017-10-01 - 2018-02-18
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 41 miejsc więcej informacji
Projekt, 15 godzin, 41 miejsc więcej informacji
Wykład, 30 godzin, 41 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Zajęcia w cyklu "rok akademicki 2016/2017 - sem. zimowy" (zakończony)

Okres: 2016-10-01 - 2017-02-19
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 15 godzin, 24 miejsc więcej informacji
Projekt, 15 godzin, 24 miejsc więcej informacji
Wykład, 30 godzin, 24 miejsc więcej informacji
Koordynatorzy: Rajmund Kożuszek
Prowadzący grup: Rajmund Kożuszek
Lista studentów: (nie masz dostępu)
Zaliczenie: Ocena łączna
Jednostka realizująca:

103200 - Instytut Informatyki

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Politechnika Warszawska.